Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Iet Biometrics ; : 12, 2022.
Article in English | English Web of Science | ID: covidwho-1882778

ABSTRACT

Biometrics are the among most popular authentication methods due to their advantages over traditional methods, such as higher security, better accuracy and more convenience. The recent COVID-19 pandemic has led to the wide use of face masks, which greatly affects the traditional face recognition technology. The pandemic has also increased the focus on hygienic and contactless identity verification methods. The forearm is a new biometric that contains discriminative information. In this paper, we proposed a multimodal recognition method that combines the veins and geometry of a forearm. Five features are extracted from a forearm Near-Infrared (Near-Infrared) image: SURF, local line structures, global graph representations, forearm width feature and forearm boundary feature. These features are matched individually and then fused at the score level based on the Improved Analytic Hierarchy Process-entropy weight combination. Comprehensive experiments were carried out to evaluate the proposed recognition method and the fusion rule. The matching results showed that the proposed method can achieve a satisfactory performance.

2.
47th Latin American Computing Conference, CLEI 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1672587

ABSTRACT

Ear recognition has gained attention in recent years. The possibility of being captured from a distance, contactless, without the cooperation of the subject and not be affected by facial expressions makes ear recognition a captivating choice for surveillance and security applications, and even more in the current COVID-19 pandemic context where modalities like face recognition fail due to mouth and facial covering masks usage. Applying any deep learning (DL) algorithm usually demands a large amount of training data and appropriate network architectures, therefore we introduce a large-scale database and explore fine-tuning pre-trained convolutional neural networks (CNNs) looking for a robust representation of ear images taken under uncontrolled conditions. Taking advantage of the face recognition field, we built an ear dataset based on the VGGFace dataset and use the Mask-RCNN for ear detection. Besides, adapting the VGGFace model to the ear domain leads to a better performance than using a model trained for general image recognition. Experiments on the UERC dataset have shown that fine-tuning from a face recognition model and using a larger dataset leads to a significant improvement of around 9% compared to state-of-the-art methods on the ear recognition field. In addition, we have explored score-level fusion by combining matching scores of the fine-tuning models which leads to an improvement of around 4% more. Open-set and close-set experiments have been performed and evaluated using Rank-1 and Rank-5 recognition rate metrics. © 2021 IEEE

SELECTION OF CITATIONS
SEARCH DETAIL